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The existing approximate solutions of th i s  problem a r e  based  on 
the use of prede termined  velocity prof i les  i n  t r a n s v e r s e  sect ions of 
the flow'p2. 
obtained by s t r i c t  integration of equations dealing with the boundary 
layer  . 

The present  a r t ic le  pyoves that a solution can  a l s o  be 

1. Integral Relations and Posing of the Boundary Value Problem 

We shal l  u se  a cylindrical  sys t em of coordinates z ,  R ,  and (o, 

and sha l l  consider  the je t  emerging  in  the direct ion of the Oz axis-- the 
axis  of symmet ry - - f rom a round aper ture  with a radius  R1 into a co-  
axial  flow of the s a m e  fluid, uniform and one-dimensional  a t  infinity, 
and possessing a velocity Uo, paral le l  to the Oz axis.  
c r o s s  section of the j e t  and in  the c r o s s  sect ions of i t s  potential c o r e ,  
we shal l  consider  the velocity a s  being the same--para l le l  to the O z  
axis  and equal to  U1. 
f r o m  the j e t  co re  by surface A A' B B' C ,  and f r o m  the ex terna l  
potential-flow by surface A A' D D' H HI ( see  f igure,  below). 
rad i i  of these sur faces  of revolution a r e  designated, respect ively,  Ro 
and Rz. The region of turbulent mixing, a s  usual,  shall  be divided into 
a n  ini t ia l  s ec to r ,  which extends f r o m  section A A' to the end of the 
co re ,  and the m a i n  section, which l ies beyond the end point C of the 
flow core.  

Both in  the exit  

The region of turbulent mixing is  separa ted  

The 

H 

'H. B. Squire and I. Trouncer ,  ROUND JETS I N  A GENERAL 
STREAM, Repor t s  and Memoranda,  A. R. C . ,  1944, No. 1974. 

turbulentnykh s t ruy ) ,  Fizmatgiz ,  1960. 
G. N. Abramovich,  THEORY O F  TURBULENT FLOWS (Teor iya  2 
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If we overlook changes in  the j e t  p r e s s u r e  and consider  the m e a n  
flow a s  established, we c a n  obtain relationship3s4 

2 
R2 R2 

pVz2RdR - 2~rUoJ pVzRdR = pU1 (U1 - Uo) r R 1  , (1.1) 
0 

2Tr I 
0 

which ref lects  the law of the conservation of l inear  momentum (where 
p is  the m a s s  density of the fluid and Vz i s  the m e a n  value of the 
longitudinal component of velocity a t  point z ,  R). 
using the m e a n  components of total  velocity, Vz and VR, it is  m o r e  
convenient to use the components U and V, defined a s  

However,  instead of 

By substituting (1. 2) i n  (1. l ) ,  we get the corresponding equation 
f o r  the conservation of l inear  momenturn expres sed  in  t e r m s  of (1. 2): 

0 0 

We shal l  a s s u m e  the following boundary conditions: a smooth 
t ransi t ion of longitudinal velocity a t  the j e t  boundary to a velocity of 
a uniform, unidirectional flow, and the continuity of the flow along i t s  
ax is  (M-const)-- 

2. Dimensionless Equation of Motion 

We select  radius  R1 of the exit c r o s s  sect ion a s  the sca le  of 
length and the corresponding velocity U1 a t  the exi t  point a s  the scale  
of speed. Pass ing  to dimensionless  var iab les ,  we get: 

2 

3Squire and Trouncer ,  loc. cit.  
4Abramovich,  loc. cit.  



U u = -, V etc. vz , u = -  u1 u1’ u, = - u1 
I The quantit ies Ji and Qi, having dimensions of momentum (flux) 

and m a s s  (flux), a r e  nondimensionalized using Jo and Q o ,  the momentum 
(flux) and mass ( f lux )  at the exit  c r o s s  section. 

and the corresponding dimensionless quantities a r e  

Dividing both p a r t s  of equation (1. 3) by pU1’rR1’ and using (2.  1) 
and (2.  2), we obtain the following statement of conservation of 
momentum: 

r 2  r Z  

0 0 

2 1  u’rdr  t 2hJ u r d r  = 1 - X 
(1 = 2) . (2 .5)  

F o r  a n  established m e a n  flow of an ax i symmet r i ca l  je t ,  ignoring 
changes in  p r e s s u r e  and using Prandt l ’ s  formula  fo r  turbulence fr ic t ion,  
we obtain the following equations5 : 

which m a y  be res ta ted  in  t e r m s  of (1. 2) a s  

(2.7) 
av v t -  t - = o ,  au 
aR R 

L. G. Loytsyanskiy, FLUID AND GAS MECHANICS (Mekhanika 
zhidkost i  i gaza) ,  Fizmatgiz ,  1959. 
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w h e r e  1 is the mixing length i n  the ma in  sect ion of the je t ,  r ega rded  
as  being proport ional  to  R z ,  stated' as  

I = c R ~  ( c  - const) .  (2 .8)  

Substituting (2 .8 )  into (2.7)  and using (2.  l ) ,  (2. 2), and (2. 5) as wel l  
as taking into account that  Rz is a function of z only, we get  the follow- 
ing equations fo r  the m a i n  sect ion of the jet: 

a U  au u - t - + - - 0 .  
ax ar r (2.10) 

3. Criterion of Similarity 

The genera l  c h a r a c t e r  of the m e a n  flow at l a rge  d is tances  
f r o m  the exit  section of the j e t  ought to  be de te rmined  by the quant i t ies  
J ,  U o ,  and p f r o m  which, however,  it  is impossible  to  cons t ruc t  a 
dimensionless  p a r a m e t e r  (J ,  the total  momentum of the je t ) .  
(1.  1) we have J = pU1 (U1 - Uo) r R I Z .  
it follows that 

F r o m  
F r o m  th is  and (2.  3 )  and (2 .  5) 

J = J o  ( 1  - X) .  (3 .1)  

Therefore ,  the ass ignment  of a value to J is  reduced to ass igning 
values  to  Jo  and to 1, and- -a s  s ta ted previously-- the de te rmining  
f ac to r s  h e r e  a r e  X ,  J o y  U o ,  and p ,  f r o m  which it i s  imposs ib le  to  
deduce any dimensionless  p a r a m e t e r  other  than X i t se l f .  

For th is  reason ,  the c r i t e r i o n  of s imi l a r i t y  of m e a n  f lows i n  two 
turbulent j e t s ,  1 and 2, is the exis tence of the following condition: 

(3 .2)  

One of the conclusions which can  be d rawn  f r o m  (3. 2) i s  the well-  
known fact  that  a l l  turbulent j e t s  emerg ing  into a s ta t ionary  fluid are  
dynamically s imi l a r  ( f o r  all such j e t s ,  X = 0).  A s  i s  known, the laws 
governing the motion of the fluid ( in  the  mean)  i n  turbulent  j e t s  

~- 

6Squire and Trounce r ,  1oc.cit. 
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emerging  into a homogenous coll inear flow 7, 8, depend p r imar i ly  upon the 
value of 1. 

4. Form of the Bounding Surface of the Turbulence Area 

Let us  consider  that  the equation of boundary surface of a 
turbulence a r e a  can be given in the form of a s e r i e s  

(4 .1)  
k 

r z  = ax + . . . .  
(On the right side of th i s  expression i s  entered only the leading t e r m  of 
the expansion of r 2  i n  powers  of x ,  where a i s  a dimensionless  coeffi- 
cient. ) 

Introducing the quantit ies 

u r d r ,  (u') = ' 1  u ' rdr  = €,'(u)' 

0 
( u ) =  "/ r 2' 0 r 2' 

we m a y  wri te  (2. 5) i n  this  form?:  

(4 .2)  

(4. 3) 

where  (u) and (uz} a r e  c lear ly  mean quantit ies associated with flux 
of the fluid (mass )  and flux of momentum. [In (4. 3 )  the coefficient 5, 
which, according to (4. 2), takes  into account the difference between 

( u )  and {u') ', is  c lose  to 1.3 
follows that 

1 - 
F r o m  the quadratic equation (4.  3 )  i t  

(4 .4)  

Since the turbulence a r e a  spreads  a s  the distance f r o m  the exit 
sect ion i n c r e a s e s ,  i t  follows that when 1 > 0 and when the dis tance 
f r o m  the exit  point is  a l so  sufficiently grea t ,  the second summand 
under  the rad ica l  i n  (4.4) becomes much sma l l e r  than the f i r s t  one. 

'Squire and Trouncer ,  loc. cit.  
'Abramovich,  loc. cit .  
9 H e r e  and in  a l l  that  follows, ( ) designates  means .  
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Expanding the r ad ica l  i n  a s e r i e s  of powers  of r 2 - ' ,  we  get: 

a1 t -  a2 t . . . ,  (9' 2 r24 a 2  = a2 (1) . (4. 5 )  

F r o m  (4. 5) t he re  follows a n  es t imate  of the o r d e r  of magnitude of u 
when x i s  large:  

( u )  - r 2 - 2  . (4 .6)  

In es t imat ing the m e a n  value of u with the aid of (2 .  l o ) ,  we find 

( u }  - ( u ) r z / x .  (4. 7 )  

10 In est imat ing o r d e r s  of magnitude fo r  the var ious  terms, we take 

1 1  
- - - *  

a 1 
ax x ar r 2  r r 2  

- - -, a i  u - ( u ) ,  u - ( u ) ,  -- -, 

And in  est imat ing the o r d e r  of magnitude of var ious  individual summands  
of the left-hand side of the equation of motion ( 2 .  9) and using (4. 7), we  get 

(4.8) 

From (4. 6) and f r o m  the fact  that  1 2  i n c r e a s e s  with x, i t  follows 
that when x i s  sufficiently la rge ,  (u) i s  sma l l ,  hence,  

(4.9) 

The express ions  (4. 8) and (4.9)  lead t o  the e s t ima te  

au  a U  a U  

ax ar ax 
t u - a l - ,  u- 

which shows--along with (4. 8 ) - - tha t  the left-hand s ide of the equation 
( 2 .  9) i s  on the o r d e r  of x -' (11). 
side of equation ( 2 .  9) a r e  of the s a m e  o r d e r ,  r 2 - l  (u) '. 
the o r d e r s  of magnitude of both s ides ,  we get 

Both summands  of the right-hand 
Compar ing  

-1 ( u )  - r2x . (4.  10) 

loL.  D. Landau and E. M. Livshi t s ,  MECHANICS O F  CON- 
T I N U O U S  MEDIA (Mekhanika sploshnykh s r e d ) ,  Costekhizdat ,  1954. 
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* And f r o m  (4. 10) - - a s  wel l  as (4. 6) and (4. 1) - - i t  follows that 

r 2  = ax  '/3 t . . . .  (4. 11) 

Substituting (4. 11) into '(4. 5 ) ,  we find 

( u )  = blx-2/3 t b z ~ - ~ / ~  t . . . , bi = bi  (1) . (4 .12)  

F r o m  th is  i t  can  be a s sumed  that  all d imens ionless  functions 
defining j e t  flow a r e  representab le  in  s e r i e s  of powers  of x-'/3. 
i s ,  i n  fac t ,  l a t e r  confirmed. ) Hence, 

(Th i s  

The ini t ia l  s e r i e s  (4. 5) i s  valid when X is sufficiently g r e a t e r  than 
F o r  this  r eason ,  an  0 and when the values  of x a r e  sufficiently la rge .  

adequate co r re l a t ion  of the resul t ing s e r i e s  can  be expected only 
within the range of the values  of X and x a s  indicated above. When X i s  
c lose  to z e r o ,  i f  i s  difficult to es t imate  the o r d e r  of magnitude of the 
summands  under the rad ica l  in  (4 .4)  o r  t o  de te rmine  the type of s e r i e s  
f o r  ( u ) .  A s  a re su l t ,  one cannot successful ly  solve this  problem when 
X is c lose  to  ze ro .  
into a s ta t ionary fluid (i. e.  , f o r  the c a s e  when X = 0) ,  t he re  ex i s t s  the 
Tolmin solution". 
the boundary sur face ,  i n  th i s  c a s e  equals 1. 
range  of s m a l l  values  of X ,  the power index k i n  equation (4. 1) v a r i e s  
f r o m  k = 1 when = 0 to  k = '/3, f o r  levels  of X f o r  which the solution 
given h e r e  a l r eady  applies.  

For the c a s e  of an ax i symmet r i ca l  j e t  emerging  

Index k in  equation (4. 1 ) ,  defining the contour of 
It is  obvious that i n  the 

5. Expansion in Series of the Equations of Motion and 
of  Those Defining Boundary Conditions 

Equations (2.  IO), (4. 12) ,  and (4. 13) show that d imens ionless  
flow function +, which i s  connected with the components of velocity u 
and u by the equations 

can  be found i n  the f o r m  of an  expansion of 

l lAbramovich, loc. cit.  
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Here  the functions $1 depend only on the var iable  q, which is  
determined by the equation 

(5 .  3) 
r 
a 

= - I x - 1 / 3  - p x - 1  t (pz - y) x-5/3 t . . . I . 

With the aid of equations 

i t  i s  possible to convert  to  new dimens ionless  functions $1::: a s  wel l  as 
to coefficients a:::, p:::, y:: . . . and the longitudinal coordinate  x:::, thus 
excluding the s t ruc tu ra l  constant  c f r o m  a l l  equations.  

By substituting (5.4), ( 5 ,  5 ) ,  and (5 .  6) i n  (4. 13) ,  ( 5 .  Z) ,  and ( 5 .  3 ) ,  
we find": 

We now use ( 5 .  6) and (5 .  9 )  to obtain the following f o r  our  opera t ions  of 
differentiation: 

d (5 .10)  
- a = - 1 p 3  - p x - 1  t (p2 - y) x - 5 / 3  t ...I - , 
a r  a d? 

(5.  11) 

"For the sake of s implici ty ,  f rom now on we sha l l  omi t  the 
a s t e r i s k  f r o m  $ 1 ,  $ 2 ,  $ 3 ,  a,  p, y ,  and x. These  va lues  will  be 
presumed to be those def ined by equat ions (5 .4 ) ,  (5. 5 ) ,  and (5.  6).  

8 



With the aid of (5. 2) and (5.8) through (5. 1 l) ,  we obtain the 
necessa ry  s e r i e s  

-f. ( l o p 2  - 4y) C p p ]  x -9/3 -t . . .I 9 (5. 14) 

(5. 15) 

(5. 16) 

wherein,  fo r  purposes  of brevity,  a r e  introduced- -alongside the 
functions JIl--also the functions 

The  p r i m e  m a r k  ( I )  used in  (5. 13) through (5. 17) and everywhere  
he rea f t e r  indicates  the der ivat ives  f o r  q. 

By substituting (5.7),  (5.9),  and (5. 12) through (5. 16) into the 
equation of motion (2. 9) and then adjusting the coefficients fo r  equal 
powers  of x in  both the left-hand and the right-hand p a r t s  of this  

9 



equation, we obtain a group of ord inary  different ia l  equations f o r  
functions $1--as wel l  as f o r  functions @ I ,  which a re  connected with 
the f o r m e r  by (5. 17). 

Thus, in  adjusting the coefficients fo r  ~ - ~ / 3 ,  we get the following 
equation for  the function @ I :  

Afte r  adjusting the coeff ic ients  f o r  and using equation (5.  18), 
we can  obtain a different ia l  equation fo r  function $2, 

- 2 [ @ l l @ 2 ~ q ] l  - - x 
a3 3 3a2 q 3 

t 2$2]' = - 2 + - xP [ $ l ' ? I '  ; (5. 19) 

while adjusting the coeff ic ients  for  x - ~  and using (5. 18) and (5. 19) l eads  
to a differential  equation f o r  function + 3 ,  

2 a  x a3 - [ @ 2 ' 2 ? l r  - - [+2@pJ' - - 3 ( p 2  + y) [+1'.13' 3 

( 5 . 2 0 )  

From (5. 3) it follows that the flow axis on boundary y h a s  the 
following values: 

Converting the foregoing to  d imens ionless  va lues  with the aid of 
( 2 .  I )  and ( 2 . 2 ) ,  f o r  conditions of (1 .4 ) ,  and using (5. 21) ,  we get  the 
following boundary conditions: 

( 5 . 2 2 )  

= 0 (M = const)  . 

10 



We now substi tute (5.  12) into (2 .5 )  and with the use  of (5. 9 ) ,  (5. 17), 
and (5. 21) find that the left-hand pa r t  of (2. 5) contains t e r m s  with xo,  
x - % ,  ~ - ~ / 3 .  . . , while the right-hand side contains one t e r m  with xo .  
Adjusting the coefficients f o r  equal powers of x on both s ides  of the 
equation, we get 

(5.  23) 

Substituting s e r i e s  (5. 12) ,  (5. 13) ,  and (5. 16) into (5 .  22), using 
(5.  17) and adjusting the coefficients f o r  s imi l a r  powers  of x i n  the 
left-hand and right-hand s ides  of the resul t ing express ions ,  we find 
the boundary conditions f o r  functions @1 and $1 to be a s  follows: 

(5.24) 

6. F i rst  Approximation 

Integrating (5.  18),  we g e t  

By assuming,  i n  ( 6 .  1) that 7 = 0 and using (5. 24), we find that 
the integrat ion constant C 1  = 0,  whereupon ( 6 .  1) takes  this form: 



In  the c r o s s  sect ions of the  flow au/ar  =S 0 ( a s s u m i n g 1  <) and 
a > 0. Therefore ,  it follows f r o m  (5 .  13) that  all d 0. Taking this  
into account, and extract ing the root f r o m  both p a r t s  of (6 .  2),  we get: 

Integrating (6. 3) fo r  q, we find Q1 '12 = C z  -d-. F r o m  th is  
it follows, by using (5. 17) that  

Integration constant  C2 was  de te rmined  under  condition $1'  ,-,-I = 0. 

Constant a is de te rmined  f r o m  the integrat ion condition (5. 23) 

1 ' -  I 
into which we substi tute (6 .4)  and on computing the in tegra l  find 

a = [ l 0 5 ( 1  - X) / X 2 ] %  . (6 .5)  

With the aid of (6 .4)  it is easy  to see tha t  a l l  remain ing  conditions 
of (5 .  24) a r e  thereupon automatically satisfied.  

7. Second Approximation 

With the aid of (6 .4 ) ,  we  get 

By integrating (5. 19) and uti l izing (7.  l ) ,  we ge t  the  following 
equation: 

l 2  r13 - - 16 q9/2 t 1 q6] t D1 - 
13 

+ -  
5 (7. 2)  

If w e  a s sume  in  (7 .  2) that  q = 0 and use  ( 5 .  24),  we  s e e  that  the 
integration constant D1 = 0. 
and (6 .4) ,  we obtain f r o m  (7.  2) 

Taking th i s  into account  and using (5. 17) 

12 



(7.  3 )  

The coefficients of the l inear  differential  equation (7. 3) and its 
right-hand s ide a re  polynomials,  the subsequent terms of which contain 
q i n  a power which i s  g r e a t e r  by 3/2 than the preceding term. 
s t ruc tu re  of the polynomials is such that a gene ra l  solution of equation 
(7. 3) c a n  be sought i n  the f o r m  of a product of q '/2 and a n  infinite 
s e r i e s  i n  powers  of /2. 

the p re sen t  c a s e  becomes  a polynomial, and that  the solution looks as 
follows : 

The 

3 It i s  easy  to s e e  that  the infinite series in  

H e r e ,  Ai r ep resen t s  the dimensionless  constant  coefficients (All  
Ai  a r e  a l ike i n  that  they a r e  equal to ze ro ,  when i > 5). 
(7 .4 )  satisfies all boundary conditions of (5. 24) when q = 0. 
substi tuting (7 .4)  i n  (7. 3) and adjusting the coefficients fo r  the highest  
power of q17h i n  both p a r t s  of the equation, we find 

Solution of 
By 

x a4 ( 7 .  5) 
1 

8.729.1 1 
A5 = 

Adjusting the coeff ic ients  f o r  q7, q l 1 / 2 ,  q4,  and q5/2 and utilizing, 
consecutively,  (7 .5)  . . , , (7.  6),  we then get: 

4 .31  
729- 121.13 A4 = - l a 4 ,  58 4 1  h a  t - 1a3p 

243.5- 12 1 81 
A3 = 

(7 .6 )  
4 1  Xa t - Xa3P 2 1 

81 729.121 81 
la4 - - 1a3~'3,  = 25 0 

729-7.121 
A 2  = - 

To de te rmine  constant  p,  we shall  now t u r n  to the in tegra l  
expres s ion  (5.23),  which on the bas i s  of $2 I 
t h i s  f o r m :  

= 0 and of (7. 1 ) ,  a s s u m e s  

(7 .7 )  

13 



F r o m  (7 .4)  and (7. 7) it follows: 

A a 4  
120.7.13 ' 

A l t A z  t . . .  + A s = -  (7. 8) 

Substituting expres s ions  (7. 5) and ( 7 .  6 )  into (7. 8) ,  we get 

I 

I p = - 3 /121 a = -0.024793 a .  (7. 9) 

And by using (7.  5) ,  (7 .  6 ) ,  and (7. 9),  we find 

A4 = - 1. 0813*10-4Aa4, 

(7 .4)  and (7.  10) will  prove to  us  that  the remain ing  boundary 

A5 = 1. 5588-10-5Aa4 . 

, conditions (5. 24) a r e  sat isf ied automatically.  

(7 .10)  

8. Third Approximation 

Equation (5.  20) i s  integrated in  the s a m e  way as  equation 
(5. 19) f o r  the second approximation. 
polynomial, thus 

The solution a p p e a r s  as  a 

where in  the coefficients have the following values:  

~ B1 = - 4. 8905.10-'Xa5, Bz = 5. 8683.10-6Xa5, 

B3 = - 1. 9689.10-6Xa5, B4 = - 5. 9013*10-7Xa5, 

B7 = 1. 0291. 10-8Aa5. 

F r o m  the in tegra l  express ion  (5. 23),  we de te rmine  the constant  y: 

y = - 2. 2010.10- 4a2 

W e  also de te rmine  another  value which wil l  be needed la te r :  

+ 3 1  d l  = B1 t B2 t . , . t B 7  = - 1.1950.10-6Xa5, (8 .4)  
~ 

T- 
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9 .  Basic Characteristics of the Flow 

The excess  expenditure of fluid Q through the c r o s s  sect ion of 
the flow is de te rmined  by the equation: 

Q = 2.d U R d R .  

0 

(9 .1)  

Dividing (9.  1) by pUlaR1’ and using (2.  l ) ,  ( 2 .  2 ) ,  (2 .4) ,  and (5. l ) ,  
we  obtain a n  expres s ion  defining this  d imens ionless  excess  expenditure 
as follows: 

If we a s s u m e  that $11 ,,=o = 0, which can  be done because  $1 can  be  
accura te ly  de te rmined  up to the point of an a r b i t r a r y  constant ( s e e  
pa rag raph  6) ,  and i f  we a l s o  use the  conditions $ 2  lq=0 - $31 = 0 ,  
we c a n  get f r o m  (9.  2), (5. 8),  and (5. 21) 

- 

while it follows f r o m  (5.23) and the condition $11 ?=o = 0 that 

We now introduce the value X with the aid of th i s  equation, 

and by using (9 .4 ) ,  (7. 7 ) ,  (8 .4) ,  ( 6 . 5 ) ,  and (9. 5) ,  we obtain f r o m  
( 9 . 3 )  

+ . . . I  . ( 9 . 6 )  
0. 019231 0. 00025095 

x 413 

With the aid of (5.  7 ) ,  (6 .  5) ,  (7 .9 ) ,  (8. 3) ,  and (9.  5) ,  we find: 



+ .. . . (9 .7 )  1 0.024793 0.00022010 - 
x '13 X x rz = 

By assuming q = 0 in (5. 12) and using (5. 17), (6 .4) ,  (6 .  5), (7 .4 ) ,  
(7. 9 ) ,  (7 .  l o ) ,  (8. l ) ,  ( 8 . 2 ) ,  (8.  3),  and (9.  5) ,  we find the excess  
dimensionless  axial  velocity of the flow a s  being 

t ...I ( 9 . 8 )  
0.037037 0.0012470 0.000045592 

uo = x 
x 413 x2 

while i f  we a s sume  q = 1 i n  (5. 16) and use  (5.  24), (6 .  5 ) ,  (7 .7) ,  (7.  9 ) ,  
(8.4), and (9 .  5 ) ,  we obtain a n  expression f o r  the dimensionless  
t r ansve r se  component of velocity a t  the flow boundary urn:  

3 [ x2 t . . . I  . ( 9 . 9 )  
0.00018315 + 0. 0000093208 u o  = - - 

x 813 

Let us determine the profile of longitudinal velocit ies a s  defined 
by two f i r s t  approximations.  Retaining the first two terms in  (5 .  12) 
'and using (5. 17), (6 .4 ) ,  (6.  5 ) ,  (7.4),  (7 .  9 ) ,  (7 .  l o ) ,  ( 9 .  5), and ( 9 .  8 ) ,  
we get  

- (9 .10)  
- 0. 012258q3h t o .  027864q3- 0. 018981q9/2 to. 003375q 

f 
x2/3 

Retaining in the right-hand side of (9.  10) the one first summand,  
we obtain a velocity profile de te rmined  by the f i r s t  approximation. 
Experimentally determined prof i les  a re  c lose  to  this  theore t ica l  
profile l 3 l l 4 .  The second summand of the right-hand s ide of (9. 10) 
tu rns  out to  be negative fo r  the en t i re  in te rva l  of 0 < q < 1. This  means 
that the velocity prof i les  defined in  the second approximation a re  some-  
what "sharper"  than the velocity prof i le  obtained in  the f i r s t  approxi- 
mation. I t  mus t  a l so  bc borne in  mind that the second summand 
becomes appreciable only when the value of X is  ve ry  small. General ly  
speaking, a t  a g r e a t  dis tance f r o m  the exi t  c r o s s  sect ion of the flow, 

13Squire and Trouncer ,  loc. cit .  
14Abramovich, loc. cit .  
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i t  is sufficient--in a l l  the expansions obtained--to r e t a in  only the first 
t e r m s ,  result ing in very  s imple expressions.  Subsequent approxi- 
mat ions  need to be taken into account only to de te rmine  the flow profile 
at the beginning of the ma in  section of the j e t  flow. 

10. Starting Point for the Longitudinal Coordinate 

In the solution a s  found above, one thing remained undetermined 
and that was the s ta r t ing  point of coordinate z. A rat ional  choice of 
such a s ta r t ing  point and determinat ion of its posit ion with r e spec t  t o  
the exi t  section of the flow can  be made only a f t e r  a solution fo r  the 
init ial  section of the flow has  been obtained and coupled with the solu- 
t ion for  the ma in  section. 

The position of the s ta r t ing  point of the coordinate z with r e spec t  
to t r a n s v e r s e  sect ion 1, passing through the end C of the co re  of the 
flow ( s e e  f igu re ) ,  c a n  be determined as  follows. 

Let  us  designate the coordinate of sect ion 1 as zo (corresponding 
to the dimensionless  coordinates  x o ,  xo::, XO) .  The dimensionless  
e x c e s s  axial  velocity i n  sect ion 1 equals 1 - 1: 

uol = 1 -  x .  (10.1) 

Substituting X = XO in  (9. 8) and using (10. l ) ,  we obtain the 
equation 

0.037037 0.0012470 + 0.000045592 - 1 - 1  
t.. . - - ’ 

x 02/3 (x 0 2’3) x 
(10. 2) 

which s e r v e s  fo r  defining X o .  
X = Xo in  s e r i e s  (9 .  6) through (9.  9) ,  it i s  possible  to find the bas ic  
flow c h a r a c t e r i s t i c s  i n  section 1. 
at the moment ,  because the flow p a r a m e t e r s  i n  the t ransi t ion sect ion 
1 can  be de te rmined  m o r e  accurately a f t e r  the coupling of the solutions 
fo r  the  ma in  and the init ial  sections of the je t  flow. 

After determining Xo and substi tuting 

However, we r e f r a in  f r o m  doing so 

Received f o r  publication: Februa ry  9,  1965. 
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